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By combining the one-dimensional "crystal orbitals" of a simple polymer 
under the action of a perturbation which extends the repeating segment from 
one site to n sites a perturbation method allows the band structure of the 
new chain to be calculated. As well as estimating the band gaps to a fairly 
good agreement with the results of the "direct"  method the present technique 
shows how specific gaps created by the symmetry-lowering will respond to 
the characteristics of the perturbations imposed. 
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1. Introduction 

Since the development of quantum chemical methods to treat regular, infinite 
lattices [1, 2] a number of methods have recently been proposed [3] to try to 
incorporate disorder in these lattices and thereby investigate the removal or 
reduction of the translational symmetry. Among these has been one involving 
the reduction of short-range order of a one-dimensional regular polymer chain 
by increasing the size of the unit segment [4, 5]. This work showed that if the 
perturbations of the original chain were small, as would for instance obtain from 
certain (periodic) internal rotations, the new conformation could be treated by 
combining certain energy-band states (k-states or microstates) by adding terms 
describing the perturbation to the zeroth order  hamiltonian. 

In the present paper we shall study the effect of reducing the short-term symmetry 
of a periodic chain - - X - - X - - X - - ,  where X depicts an atom or group of atoms 
and will be referred to as a "site",  by enlarging the unit segment through a 
periodic perturbation of the sites. In Ref. [5] the perturbations enlarging the 
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unit segment were applied to the interactions between the sites - since conforma- 
tional changes were being investigated the sites themselves retained their regular- 
chain characteristics: our task now is to try to answer questions such as "What  
is the result on the band structure of the simple regular polymer 
. . . .  X - - X - - X  . . . .  when the sites X experience periodic perturbations which 
result in the chain . . . .  X I - - X 2 - - X 3 - - X 1 - - X 2 - - X 3 - - X 1  . . . .  ?". We shall 
suppose that the environmental changes which transform X to X / a r e  sufficiently 
small to permit the use of perturbation theory, and we shall work with a general 
size n of the asymmetric segment - - (X1--X2 . . . . .  Xn)- -  which will allow us 
to infer the result of decreasing the regularity of the chain by letting n become 
progressively larger. 

Physically, such a model might describe the imposition of a set of different 
structural changes in the sites as might obtain in a polypeptide chain or protein 
when some periodic sequence of amino-acid residues - - N H R - - C O - -  differing 
in side group R confers a set of periodic electronegativity changes •aj on the 
main chain atoms. Alternatively the model might represent a simple polymer 
chain adsorbed on, or trapped in, a crystal lattice, and thus subjected to a 
periodicity derived from the lattice. We might also consider the system as an 
extension of that in an earlier work [6] in which a perturbation was applied at 
a unique site in the chain (simulating chemical attack) to one in which simul- 
taneous attack occurs at specific periodic sites along the chain. Also important 
is its relevance to the possibility of creating "made to measure"  band gaps in 
semiconducting polymers [7] by controlled substitutions by impurity atoms. 

In all these examples a method such as the one envisaged would eventually 
permit an approximate quantum chemical treatment of periodic chains whose 
unit segments would entail such a large number of sites and basis functions as 
to forbid treatment by existing methods. For certain biopolymers, particularly 
proteins, for which the possibility of electrical conductivity [8] is of biological 
interest, and for which partial electron delocalization on the chain precludes 
model calculations on constituent fragments, such a method might prove useful. 

2. Theory 

2.1. The Unperturbed System 

Consider a one-dimensional chain of N identical sites where N is an (odd) 
infinite number. Then applying the Born-K~irm~n boundary conditions for a 
cyclic lattice the electronic "crystal orbital" of the chain is expressed by the 
usual Bloch function [1] 

q)'(k) N -1/2 ~�89 = eZ1kXj (1) 
j=0 

where Xi is the electronic wave function associated with the /'th site and the 
one-dimensional wave vector k used here is a continuous variable in the range 
0-< k < 27r. If the Hamiltonian of the chain is H ~ and if the orbitals involved in 

S )~j~H Xi~ d~" depends only on the separation ,Vj are such that the interaction/3cJ~ , o 
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J-~ ]Yl-j2[ of the centres Xh and Xi2 (and not on their relative orientation), then 
the energies E~ satisfying the equation 

H~ ) = E~ )~(k ) (2) 

in an independent-electron model are given by 

E~176  ,=1 cos jk. 

The continuum of energy values E~ for the defined range constitutes an 
energy band, and there will be as many such bands as there are functions like 
)0 on the ]th site. However  since we are restricting our present attention to only 
one set of functions the Bloch orbital functions qffk) and energies E~ need 
not carry a band label. Purely for the convenience of keeping the later numerical 
applications of the theory to a maximum simplicity the Hiickel nearest-neighbour 
restrictions will be imposed. We therefore omit the terms with J > 1 from the 
dispersion energy expression, leaving 

E~ = a + 2/3 cos k (3) 

but it must be remembered that the theory does not depend on this restriction. 

2.2. The Perturbation 

If V describes a periodic perturbation of the chain as described in Sect. 1 so 
that the hamiltonian of the resulting system i s / 4 -  H ~  V the functions qffk) 
satisfying Eq. (2) become zeroth order functions which may be mixed by V. 

The orthonormality of the ~ (k )  follows from their form Eq. (1) and requires 
that the general matrix element of the new hamiltonian H be 

H(kl ,  k2)= E~ k2)+ V(kl, k2) 

V(kl,  k2) = N  -1 Z ee(6k2-i'kl) f x*Vxi2 dr. 
h,& 

But since, in this work, we are perturbing the sites alone, and not the interactions 
between them, the power of V will be restricted to producing non-zero integrals 
of the kind appearing on the right hand side of the last equation only when 
/'1 =/'2. Writing the resulting integral as vi this quantity may be identified as the 
increment in the Hiickel o~ term of the j-th site as a result of the perturbation. 
The perturbation matrix element thus becomes 

V(kl, k2) = N - l [ v l { e  iAk + e iak(n+l) + e iAk(2n+l) + .  �9 .} 

- } - I d 2 { e a i a k q - e i A k ( n + 2 )  q_ e i A k ( 2 n + 2 )  q_ . . . }  

+ 

+ vn{e i~ak + e2i~ak + e3iniak q _ . . . } ]  

= N - l [ 1  + e i~ak + e 2inAk q-" �9 " ] [Vle  iak + v2 e 2iak i nAk  1 
q-" �9 " + V n e  1. 

(4) 
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The presence of the initial factor N -1 requires that if the expression is not to 
vanish the first bracketed factor, consisting of N/n  terms, must sum to a value 
which is at least an appreciable fraction of N. But because of the cyclic nature 
of these terms a general value of Ak results in a vanishing sum. The only way 
in which mutual annihilation would not occur would be if the k interval obeyed 
the conditions Ak = 0, 27r/n, 47r/n, etc. However  the states available for combina- 
tion are just those in the first Brillouin zone, so the k interval is subject to the 
further restriction IzXkl ~ 2m Respect for both these conditions yields 

dxk = 2 rrl/ n ) 

where ~ (5) f 

l = 0 ,  1 ,2  . . . .  , n - 1 .  J 

Application of Eq. (5) to Eq. (4) causes the infinitesimal and infinite factors to 
be replaced by the finite quantity n -1, thus giving the final expression of the 
perturbation matrix element which, depending on the interval between the k 
values rather than on the values themselves, can be completely characterized 
by the label l: 

V1--- V (k , k  +21rl/n)=n -1 ~ vie 2"~'t/n" 
j = l  

where (6) 

l = 0 , 1 , 2  . . . .  , n - 1 .  

Substitution of Eq. (6) into the expression for the general element of the energy 
matrix, 

H(k, k + 27rl,/n) = E~ + V~ 

generates the energy matrix H whose eigenvalues are identical to those of the 
standard n x n  complex Hiickel tight-binding energy matrix that would be 
obtained by considering a unit segment of n sites. We shall refer to the latter 
procedure as the direct calculation and that involving the calculation of Vt as a 
perturbation method. 

2.3. Perturbation Energy 

The energy E~ of the perturbed chain, to second-order is given by 

.-1 i vd2 2 0 E k = E k  + Vo+ ~ (7) 
l=1 a t (k)  

where the zeroth-order  energy E ~ is given by Eq. (3), while the first order 
correction term Vo is the diagonal perturbation matrix element given by Eq. (6) 
when l = 0. The quantity At(k) is the energy interval between state k and one 
of the states allowed to couple with it as explained in the previous section. This 
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interval, defined as A/(k) o o = E k - - E k + 2 ~ i / ~  is given by 

hi(k) = 2/3[cos k - c o s  ( k  + 2or l /n ) ] ]  
! 

where / (8) 

/ = 1 , 2  . . . . .  n - 1  J 

and where we have used Eq. (3). 

Unlike the other quantities in the first- and second-order contributions to the 
energy expressed in Eq. (7) A~(k) is k-dependent and for each permitted value 
of l becomes zero twice in the complete range 0 -< k < 2or of the Brillouin zone, 
or once in the half range used in Fig. 1 (with n = 5) to display the non-redundant  
energy features. Each zero value of Al(k) confers an isolated singularity on E~ 
at the k points for which the direct calculation predicts discontinuities corres- 
ponding to b a n d  gaps,  i.e. at k = or/n, 2or /n  . . . . .  or(n - 1 ) / n  in the half-zone. 
As finiteness is restored to E~ from +co (depending on the direction from the 
singularity) band gaps will also be described by Eq. (7), but it is not yet obvious 
how adequate second order perturbation theory is in the region of the turning 
points to predict the magnitudes of the band gaps. 

Since each h i (k )=  0 condition in Fig. 1 corresponds to a unique value of l the 
latter can be used to label the band gaps. It is easy to see that in the half-range 
0----- k -< or band gaps occurring at k values defined by k = (n - l ) / n  correspond 
to the zeros of the expression in Eq. (8). 

At(k) 

Fig. 1. Energy interval At(k) in/~ units 
between states k and k +27rl/n for a 
single-site polymer chain with n = 5 
and dispersion energy given by Eq. (3) 
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I Fig. 2. Dispersion energy E ° for 
[ a single-site chain ( ) and the 
l result F k of periodic perturbat ions 
I ( 0 . l - 0 . 2 0 . 3 - 0 . 4 0 . 2 )  by (a) the 

3rc/5 k direct me thod  ( . . . .  ) and (b) Eq. (7) 
i t 
2 3 ( . . . .  ). All energies are multiples 

of 

3. Application 

3.1. The Dispersion Energy 

A polymer chain was subjected to the arbitrary set of periodic perturbations 
vl = 0.1/3, v2 = - 0 . 2 f l ,  v3 = 0.3fl, v4 =-0 .4 /3 ,  v5 = 0.28, whose average is zero, 
thus defining a new translational symmetry based on an enlarged, 5-site, unit 
segment. In Fig. 2 the dispersion curve (a) is the result of the "direct"  calculation 1 
in which the 5 x 5 complex energy matrix has diagonal elements a + v i ( / =  1 to 
5) and curve (b) was calculated with the same set vi producing the Vi terms 
defined by Eqs. (6) and (7), together with the energy intervals Al(k)  given by 
Eq. (8). (The dispersion curve E~ of the unperturbed chain is also shown for 
comparison.) Except for the singularity regions at k = (n - l)Tr/n Eq. (7) accounts 
quite well for the effect of the perturbation, including the creation of band gaps. 
Although these are a little exaggerated it is satisfying that the general appearance 
of the energy band structure of an n-site chain can be calculated in terms of the 
perturbations imposed on the corresponding 1-site chain. 

1 The  dispersion energy calculated by the latter me thod  consisted of 5 energy bands.  In order to 
draw curve (b) in Fig. 2 (and also those of Fig. 3) these bands have been extended into successive 
Brillouin zones and the k values re-scaled so that the resulting Ek curve refers to the same Brillouin 
zone as that (E °) of the unper turbed  chain, and is therefore also directly comparable  with curve (a). 
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3.2. The Band Gap and the Unit Segment 

Note that the four band gaps in Fig. 2 as calculated by either method are generally 
unequal, and as they probably depend on the nature of the perturbation it seems 
desirable to investigate this important effect. 

Eqs. (6) and (7) show that in regions k ~ ( n -  l)zr/n where At(k) tends to zero 
the Ek curves on either side of the singularity repel each other the more, the 
greater the value of ]V~] 2. We must therefore see how this description of the 
formation of the gaps depends on the perturbations and their distribution. 

If the whole chain were placed in a uniform environment so that all the as  were 
changed equally we would have vl = v2 . . . . .  v, = const. (v) for any size of 
segment we chose. Then the only non-zero Vt possible is the diagonal element 
l = 0 because Eq. (6) shows that all other contributions consist of mutually- 
annihilating terms. The result is then, as expected, a shift of the energy by the 
first-order term 

1 n 
V0 = - Y~ v~- = v, with no band gaps created. 

n / . = l  

A similar result obtains in the opposite extreme for a truly aperiodic chain. For, 
allowing the aperiodicity to be attained by letting the size n of the asymmetric 
unit segment go to infinity, the random nature of the perturbations vj in Eq. (6) 
will also lead to zero sum in all cases except l = 0. The theory therefore predicts 
an Ek curve which is simply shifted from E ~ by the average perturbation 

1__ ~ vj, and so again there are no band gaps. 
n / = l  

Now consider an intermediate case, in which a finite size n of the asymmetric 
unit segment confers a true translational symmetry of the chain. The sums 

tl 
1 ~ vie2~q/n 
n i = l  

now no longer vanish generally for l r O, and thus second order perturbation 
elements Vt are generated which, by Eqs. (6) and (7), determine the band gap 
through the quantity 

IVll 2-- ~, vjcos(21rfl/n + vjsin(2~rjl/n . (9) 
1 1 j = l  

Eq. (9) shows that the set of perturbations vj ( ] =  1 to n) contributing most 
importantly to [VII 2 would be one for which the sequence of vi along the unit 
segment displays a (stationary) wave-like variation in relative amplitude and 
nodal behaviour. Thus the larger energy gaps at k = 2~-/5 and 3~-/5 (l = 3 and 
l =2)  in the above example, shown in Fig. 2, are explained by the closer 
correspondence between the relative amplitudes and nodal behaviour of the  
perturbation sequence (1 - 2  3 - 4  2) and that of sin ~bt for l = 2 and l = 3 than 
those of sin ~bl or c o s  ~ l  for l = 1 and 1 = 4 (Table 1). 
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Table 1. Cosines and sines of ~bi(l ) =-- 21rf l /5  for comparison with the perturbation sets producing 
the results shown in Fig. 3 

f 1 2 3 4 5 

cos 4'o(j) 1 1 1 1 1 
sin &o(J) 0 0 0 0 0 

cos q~l(J) 0.309 -0 .809  -0 .809  0.309 1 
sin &l(J) 0.751 0.588 -0 .588 -0 .951 0 

cos &2(J) -0 .809  0.309 0.309 -0 .809  1 
sin &2(J) 0.588 -0 .951 0.951 -0 .588  0 

cos q~3(/') -0 .809  0.309 0.309 -0 .809  1 
sin ~b3(j) -0 .588  0.951 -0 .951 0.588 0 

cos ~b4(j) 0.309 -0 .809  -0 .809  0.309 1 
sin &4(j) -0 .951 -0 .588 0.588 0.951 0 

This conclusion is confirmed in Fig. 3 which compares  Ek curves calculated 
by the direct method for the per turbat ion distributions A 
(0.15 - 0 . 4 0  - 0 . 4 0  0.15 0.50) and B ( -0 .20  0.40 - 0 . 4 0  0.20 0.00), both sets in 
unit s of ft. As can be seen by reference to Table 1, A follows the cos ~bl sequence 
for l = 1 and 1 = 4 and therefore gives rise to larger gaps at these points than at 

2 -  
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- 1 -  

-2-  
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Fig. 3. A comparison of the band 
structures resulting from two sets of 
5-site perturbations of the simple 
chain. Case A ( ) has the set 
( 0 . 1 5 - 0 . 4 - 0 . 4  0.15 0.5) and case B 
( . . . .  ) the set ( -0 .2  0 . 4 - 0 . 4  0.4 0). 
Energies are in/3 units 
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l = 2 and l = 3, while the opposite is true for the B distribution, which follows 

sin ~b2 and sin 03. 

3.3. A More Accurate Estimation of the Band Gaps? 

As was observed in Sect. 3.1 the magnitudes of the band gaps were somewhat  
overest imated in the perturbat ion method because of the diminishing accuracy 
of the second order expression (7) as we approach the singularities where the 
coupling states k and k-27rl /n  have vanishingly close E ~ values, which we 
denote e ~ 

But since this pair of k states is thereby selected for strong coupling we might 
reasonably wonder  whether the interaction is so strong in this region that its 
contribution could be dominant  in the creation of the band gap. Since the zeroth 
order energies of the coupling states are equal (e ~ the assumption would lead 
to the expression of the inter'action as 

e~ Vo - - e l  V l I=0, 
V* e~ + Vo-e,  

The band gap would then be the difference between the roots of this equation, 
i.e. 

Act = l Vii. (10) 

Applied to the example taken in Sect. 3.1 whose results were shown in Fig. 2 
the calculated band gaps a re  compared in Table 2. Although Eq. (10) still 
somewhat  overest imates the values it affords a bet ter  estimation than the second 
order expression (7). 

4. Summary and Discussion 

When applied to the n-site segments defining the chain considered in Sect. 3 
dispersion curves were obtained showing the same general features as those 
calculated by diagonalizing the n x n energy matrix. Although the band gaps 
thus calculated are a little exaggerated, as a labour-saving device to estimate 
the band structure of a polymer  possessing the kind of shor t - term disorder 
referred to in Sect. 1 the method appears promising. 

The model  polymer was chosen to be a simple hydrocarbon chain in order that 
effects arising f rom the charge distributions could be minimized. In a polymer  

Table 2. Band gaps created by the perturbations (0.1 -0.2 0.3 -0.4 0.2) to the simple chain 
(cf. band structure in Fig. 2). Multiples of/3 

band gap label h 1 2 3 4 

direct method 0.09 0.37 0.35 0.05 
second order perturbation 

Eq. (7) 0.10 0.51 0.51 0.10 
Eq. (10) 0.08 0.40 0.40 0.08 
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where  such effects a re  i m p o r t a n t  the  crysta l  o rb i ta l s  c o r r e s p o n d i n g  to t h e  s ame  
deg ree  of  p e r t u r b a t i o n  as the  ene rgy  Eq.  (7) would  have  to be  ca lcu la ted ,  and  
the  in fe r red  a tomic  charges  used  to m o d i f y  the  ce t e rms  t h rough  addif iomfl  t e r m s  
in Eq.  (6). 

A l t h o u g h  some  of the  l imi ta t ions  of the  p r o c e d u r e  a re  of course  i m p o s e d  by  
those  of the  pa r t i cu l a r  o n e - e l e c t r o n  t igh t -b ind ing  m e t h o d  which it seeks  to 
r e p r o d u c e ,  it d e m o n s t r a t e s  how the  l a t t e r  wou ld  r e s p o n d  to increas ing  " d i s o r d e r "  
of the  chain  as the  size n of the  a symmet r i c  s egmen t  increases  unt i l  the  band  
gaps  are  e l imina ted .  M o r e o v e r  the  ana ly t ic  express ion  of the  d i spe r s ion  ene rgy  
Ek  of the  p e r t u r b e d  chain  in t e rms  of  the  dev i a t i on  of the  si tes f rom un i fo rmi ty  
al lows the  wid th  of a specific gap  to  be  r e l a t ed  to these  devia t ions .  This  suggests  
a p rac t i ca l  m e t h o d  of  " t u n i n g "  a se lec ted  gap  l by  mod i fy ing  the  s t ruc ture  of 
the  unit  s e g m e n t  (e.g. t h rough  the  subs t i tu t ion  of a toms  on the  ma in  chain  or  
in s ide  groups)  so as to mimic  sin ~bt or  cos 4~l. M o r e o v e r ,  knowing  how the  band  
s t ruc tu re  and  its phys ica l  coro l l a r i es  e.g. e lec t r ica l  conduc t iv i ty  and  m o b i l i t y -  
quant i t i es  of i n t e r e s t  in the  ques t ion  of semi -  and  s u p e r - c o n d u c t i n g  chains  [9] 
and  in b i o p o l y m e r s  [ 1 0 ] - r e s p o n d  to a set of si te f l uc tua t i ons , - e xpe r ime n t a l  
m e a s u r e m e n t s  migh t  be  c o r r e l a t e d  with r egu la r  o r  r a n d o m  effects which r educe  
the  t r ans l a t iona l  s3;mmetry of the  p o l y m e r  chain.  
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